Discover and explore top open-source AI tools and projects—updated daily.
openaiCode for reproducing research paper results
Top 59.7% on SourcePulse
This repository provides code for reproducing key results from the paper "Improving Variational Inference with Inverse Autoregressive Flow." It targets researchers and practitioners in deep learning and generative modeling interested in advanced variational inference techniques. The primary benefit is enabling replication of state-of-the-art results in variational inference.
How It Works
The project implements Inverse Autoregressive Flows (IAFs) within a variational inference framework. IAFs are a class of generative models that use autoregressive transformations to construct complex probability distributions from simpler ones. This approach allows for more flexible and powerful modeling of latent variables in variational autoencoders, leading to improved likelihood estimates.
Quick Start & Requirements
Theano Implementation:
pip install Theano numpyCIFAR10_PATH environment variable).floatX = float32 in Theano config or prepend THEANO_FLAGS=floatX=float32.python train.py with problem=cifar10 n_z=32 n_h=64 depths=[2,2,2] margs.depth_ar=1 margs.posterior=down_iaf2_NL margs.kl_min=0.25TensorFlow Implementation:
python tf_train.py --logdir <logdir> --hpconfig depth=1,num_blocks=20,kl_min=0.1,learning_rate=0.002,batch_size=32 --num_gpus 8 --mode trainpython tf_train.py --logdir <logdir> --hpconfig depth=1,num_blocks=20,kl_min=0.1,learning_rate=0.002,batch_size=32 --num_gpus 1 --mode eval_testtensorboard --logdir <logdir>Highlighted Details
up_diag, up_iaf2_nl, down_iaf2_nl).Maintenance & Community
Licensing & Compatibility
Limitations & Caveats
The project is archived and will not receive further updates. The Theano implementation requires Python 2.7, which is end-of-life. License details for commercial use are absent.
7 years ago
1+ week
ConnorJL
GeorgeSeif