Code for reproducing research paper results
Top 61.2% on sourcepulse
This repository provides code for reproducing key results from the paper "Improving Variational Inference with Inverse Autoregressive Flow." It targets researchers and practitioners in deep learning and generative modeling interested in advanced variational inference techniques. The primary benefit is enabling replication of state-of-the-art results in variational inference.
How It Works
The project implements Inverse Autoregressive Flows (IAFs) within a variational inference framework. IAFs are a class of generative models that use autoregressive transformations to construct complex probability distributions from simpler ones. This approach allows for more flexible and powerful modeling of latent variables in variational autoencoders, leading to improved likelihood estimates.
Quick Start & Requirements
Theano Implementation:
pip install Theano numpy
CIFAR10_PATH
environment variable).floatX = float32
in Theano config or prepend THEANO_FLAGS=floatX=float32
.python train.py with problem=cifar10 n_z=32 n_h=64 depths=[2,2,2] margs.depth_ar=1 margs.posterior=down_iaf2_NL margs.kl_min=0.25
TensorFlow Implementation:
python tf_train.py --logdir <logdir> --hpconfig depth=1,num_blocks=20,kl_min=0.1,learning_rate=0.002,batch_size=32 --num_gpus 8 --mode train
python tf_train.py --logdir <logdir> --hpconfig depth=1,num_blocks=20,kl_min=0.1,learning_rate=0.002,batch_size=32 --num_gpus 1 --mode eval_test
tensorboard --logdir <logdir>
Highlighted Details
up_diag
, up_iaf2_nl
, down_iaf2_nl
).Maintenance & Community
Licensing & Compatibility
Limitations & Caveats
The project is archived and will not receive further updates. The Theano implementation requires Python 2.7, which is end-of-life. License details for commercial use are absent.
6 years ago
Inactive