Discover and explore top open-source AI tools and projects—updated daily.
CLI tool for fetching and analyzing Bilibili user history
Top 38.0% on SourcePulse
This project provides a comprehensive tool for fetching, processing, analyzing, and visualizing Bilibili user watch history data. It targets Bilibili users who want to manage their viewing history, download videos, generate annual summaries, and automate related tasks, offering a complete data pipeline from acquisition to visualization.
How It Works
The tool leverages Bilibili's API to retrieve watch history, user uploads, and favorite lists. It processes this data to generate annual summaries, AI-powered video summaries, and allows for bulk downloading of videos and user-uploaded content. The architecture supports both CPU and GPU (CUDA) processing, with FFmpeg integrated for video downloading and FasterWhisper for audio transcription.
Quick Start & Requirements
docker build -t bilibili-api:dev -f docker/Dockerfile.cuda .
(for GPU) or docker build -t bilibili-api:dev -f docker/Dockerfile.cpu .
(for CPU).docker run -d -v ./config:/app/config -v ./output:/app/output -p 8899:8899 --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --name bilibili-api bilibili-api:dev
(for GPU) or docker run -d -v ./config:/app/config -v ./output:/app/output -p 8899:8899 --name bilibili-api bilibili-api:dev
(for CPU).docker-compose.yml
and run docker-compose up -d
.uv sync
to install dependencies, uv run main.py
to run. PyTorch installation requires specifying backend (auto
for GPU, cpu
).pip install -r requirements.txt
to install dependencies, python main.py
to run.SESSDATA
and potentially DeepSeek API keys.http://localhost:8899/docs
.Highlighted Details
Maintenance & Community
bilibili-API-collect
, Yutto
, FasterWhisper
, DeepSeek
, ArtPlayer
, and aicu.cc
.Licensing & Compatibility
Limitations & Caveats
2 weeks ago
1 day